Nonspecific high affinity binding of bile salts to carboxylester lipases.

نویسندگان

  • T Tsujita
  • N K Mizuno
  • H L Brockman
چکیده

The interactions with bile salts of carboxylester lipases (EC 3.1.1.13) from human pancreatic juice and pig pancreas were characterized by physical methods. Bile salts cause a decrease in the fluorescence intensity of the proteins at the emission maximum of 333-335 nm. The concentration dependence of this decrease shows saturation behavior, is relatively nonspecific with respect to bile salt conjugation or the presence of the 7 alpha-hydroxyl group, and is consistent with a 1:1 interaction between enzyme and bile salt. Direct measurement of the binding of [3H]cholate by equilibrium dialysis supports the stoichiometry. Other detergents also bind, causing fluorescence changes, but with much lower affinities. Binding of taurocholate to the monomeric pig enzyme is enhanced by increasing ionic strength, indicating the predominance of hydrophobic interactions. In the range of pH 5.5-6.8, binding is pH-independent with dissociation constants of 3-20 microM. At higher pH, affinity is greatly reduced and the fluorescence spectrum changes, indicating the importance of a protonated group for efficient interaction. Occupancy of the bile salt binding site partially stabilizes the enzyme against inactivation by heat but not trypsin. However, circular dichroism spectra do not indicate that bile salt binding is accompanied by any change in secondary structure. The monomeric pig enzyme binds to the argon/water interface in the presence of bile salts and binding of taurocholate to diisopropylphosphoryl-enzyme is similar to that measured with native enzyme. These results suggest that surface binding and catalysis occur at sites distinct from the bile salt binding site of the enzyme. Stabilization of the monomeric pig enzyme against denaturation at high energy surfaces occurs concomitantly with occupancy of the bile salt binding site. Overall, the data suggest that an important role of bile salts in vivo is to stabilize these enzymes at lipid-water interfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of lipases by -polylysine

Oral administration of -polylysine to rats reduced the peak plasma triacylglycerol concentration. In vitro, -polylysine and polylysine strongly inhibited the hydrolysis, by either pancreatic lipase or carboxylester lipase, of trioleoylglycerol (TO) emulsified with phosphatidylcholine (PC) and taurocholate. The -polylysine concentration required for complete inhibition of pancreatic lipase, 10 g...

متن کامل

Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts.

This work has focused on the rational development of polymers capable of acting as traps of bile salts. Computational modeling was combined with molecular imprinting technology to obtain networks with high affinity for cholate salts in aqueous medium. The screening of a virtual library of 18 monomers, which are commonly used for imprinted networks, identified N-(3-aminopropyl)-methacrylate hydr...

متن کامل

The triglyceride lipases of the pancreas.

Pancreatic triglyceride lipase (PTL) and its protein cofactor, colipase, are required for efficient dietary triglyceride digestion. In addition to PTL, pancreatic acinar cells synthesize two pancreatic lipase related proteins (PLRP1 and PLRP2), which have a high degree of sequence and structural homology with PTL. PLRP1 has no known activity. PTL and PLRP2 differ in substrate specificity, behav...

متن کامل

Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2)[S]

The apical Na(+)-dependent bile salt transporter (ASBT/SLC10A2) is essential for maintaining the enterohepatic circulation of bile salts. It is not known when Slc10a2 evolved as a bile salt transporter or how it adapted to substantial changes in bile salt structure during evolution. We characterized ASBT orthologs from two primitive vertebrates, the lamprey that utilizes early 5α-bile alcohols ...

متن کامل

Adsorption of mixtures of bile salt taurine conjugates to lecithin-cholesterol membranes: implications for bile salt toxicity and cytoprotection.

Tauroursodeoxycholate (TUDC), a relatively hydrophilic bile salt, reduces disruption of cholesterol-rich membranes by more hydrophobic bile salts such as taurocholate (TC), taurochenodeoxycholate (TCDC), or taurodeoxycholate (TDC). We examined the interactions of these bile salts in adsorption to large unilamellar vesicles to determine whether TUDC may stabilize membranes by preventing adsorpti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 28 12  شماره 

صفحات  -

تاریخ انتشار 1987